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Scoring Formula

Penalties are normalized by translation length in tokens

2204

Total Char.

10

(XLM-R SentencePiece). This ensures better
unification across languages (e.g. for CJK languages)

compared to word counts.

Total Penalty = ¥ (Error count x Error weight)

Score (%) = (1 — Total Penalty + Total tokens) x

100

Pass if Score > 99.0 % , otherwise Fail.

TOTAL
PER 1K TOKENS PER 1K WORDS

35.7 e 70

Al ®©
1963 7 N/A
Total Tokens Segments Duration
Top Categories
Accuracy/Mistranslation 6
Style 6
Accuracy/Omission 3
Other 3
Fluency/Grammar 2

Error Weights

Penalties are subtracted from the score based on error
severity:

® Critical 25 pts
® Major 5 pts
Minor 1 pts



Detailed Error Log

SEVERITY

Major

Major

Major

CATEGORY

Accuracy/Mistranslation

The source and translation
mismatch

Accuracy/Mistranslation

‘Selective invocation' and
‘cost-effective approach’
are swapped in translation.

Accuracy/Mistranslation

"as illustrated in Figure 1(a)
is a part of the first
sentence, but translation
uses it as a part of second
sentence. It results in
serious change in meaning.

SOURCE | TARGET

Selective Invocation for
Multilingual ASR: A Cost-
effective Approach Adapting to
Speech Recognition Difficulty
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Selective Invocation for
Multilingual ASR: A Cost-
effective Approach Adapting to
Speech Recognition Difficulty
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Multilingual automatic speech
recognition (ASR) models have
gained significant attention for
their ability to recognize
multiple languages using a
single model [1, 2, 3, 4], as
illustrated in Figure 1(a). Recent
advances have led to
impressive performance in
various languages through
large-scale supervised or self-
supervised pre-training [3, 5, 6,
7, 8,9, 10, 11, 12]. For example,
Whisper [6] is trained on
680,000 hours of weakly
multilingual data, enabling it to
generalize effectively across
standard ASR benchmarks,
while USM [9] leverages 12
million hours of unlabeled data
to achieve robust cross-lingual
performance. Despite these
advances, the application of
multilingual ASR systems with a
single model still faces
significant challenges. Phonetic
differences, syntactic
variations, and vocabulary
disparities across languages
make it difficult to achieve
consistent universal state-of-
the-art (SOTA) performance.
Moreover, imbalances in
training data between high-
resource and low-resource
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SEVERITY CATEGORY SOURCE | TARGET PENALTY IMPACT

languages further limit the
single-model solutions.
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Maijor Accuracy/Omission A common strategy to address 5 0.25%
these challenges is to use a

language identification (LID)
model that first detects the
language of the input speech
before invoking the
corresponding SOTA ASR
model for transcription, as
shown in Figure 1(b). However,
this two-stage approach has its
drawbacks. Many SOTA models
are commercial [12] and incur
usage fees based on the
volume of processing, making
this method costly. Additionally,
an incorrect LID prediction may
trigger the wrong model,
further affecting the user
experience [13].
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Major Fluency/Grammar A common strategy to address 5 0.25%
these challenges is to use a

language identification (LID)
model that first detects the
language of the input speech
before invoking the
corresponding SOTA ASR
model for transcription, as
shown in Figure 1(b). However,
this two-stage approach has its
drawbacks. Many SOTA models
are commercial [12] and incur
usage fees based on the
volume of processing, making
this method costly. Additionally,
an incorrect LID prediction may
trigger the wrong model,
further affecting the user
experience [13].
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Accuracy/Omission
[12]

Style

SOURCE | TARGET

A common strategy to address
these challenges is to use a
language identification (LID)
model that first detects the
language of the input speech
before invoking the
corresponding SOTA ASR
model for transcription, as
shown in Figure 1(b). However,
this two-stage approach has its
drawbacks. Many SOTA models
are commercial [12] and incur
usage fees based on the
volume of processing, making
this method costly. Additionally,
an incorrect LID prediction may
trigger the wrong model,
further affecting the user
experience [13].
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Motivated by these limitations,
we propose an alternative
strategy that selectively
invokes models based on the
complexity of the input speech.
In ASR tasks, the recognition
difficulty varies significantly.
Under clean acoustic
conditions with simple
vocabulary, both the SOTA and
regular models typically yield
low word error rates (WER).
However, in noisy or
acoustically challenging
environments, the WER
increases [14, 15, 16, 17], where
robust SOTA models generally
perform better [6]. This
observation raises a key
question: Can we distinguish
between simple and complex
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CATEGORY

Accuracy/Mistranslation

SOURCE | TARGET

speech inputs and adapt our
ASR system accordingly?
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The results indicate that, due to
the selective invocation of
SOTA models, the SIMA model
achieves significant WER
reductions of 18.6%, 9.3%, and
28.2% relative to the base
model on the three datasets.
Furthermore, compared to the
random invocation strategy,
SIMA consistently delivers
lower WER, with improvements
of 6.6%, 4.2%, and 16.8%.
Notably, the improvement on
the FLEURS dataset is
especially significant, as it is
out-of-domain for the base
model but in-domain for the
LID-Top model. These findings
convincingly demonstrate
SIMA's remarkable ability to
precisely determine when to
invoke the SOTA model, thereby
optimizing overall ASR
performance.
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Accuracy/Mistranslation

SOURCE | TARGET
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The results indicate that, due to
the selective invocation of
SOTA models, the SIMA model
achieves significant WER
reductions of 18.6%, 9.3%, and
28.2% relative to the base
model on the three datasets.
Furthermore, compared to the
random invocation strategy,
SIMA consistently delivers
lower WER, with improvements
of 6.6%, 4.2%, and 16.8%.
Notably, the improvement on
the FLEURS dataset is
especially significant, as it is
out-of-domain for the base
model but in-domain for the
LID-Top model. These findings
convincingly demonstrate
SIMA's remarkable ability to
precisely determine when to
invoke the SOTA model, thereby
optimizing overall ASR
performance.
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CATEGORY
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Accuracy/Mistranslation

SOURCE | TARGET
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The invocation decision
accuracy (ACC) and F1 scores
are approximately 70%,
supporting our hypothesis that
SLLMs can effectively
differentiate speech inputs
based on complexity. Although
SIMA exhibits a slight WER gap
compared to LID-Top, it
reduces invocation costs by
approximately 0.51x across the
three datasets, significantly
lowering associated expenses.
SM WY olAl Mst: (ACC)2t
F1 8sE 2 70%=2, 3|2 7t
Mol &, SLLM(H#E 21 2
SMo| B&tzo w2t &
Hoz 2 4 ks B
LTt SIMAE LID-Top
#g o ofztel chof F
(WER) A0 EO|X|ZH A|
71X CllO|E{ A0 A 2F 0.51HHBt
2 S8 4 SE H|IE2 &0,
&3 HI&S 3A &L Ch

—

n]
S
2

o NE
oA |

Mo & n & p
E

Although the current SIMA
model significantly improves
WER, it still lags behind
Whisper [6] on out-of-domain
data, FLEURS [28]. This
limitation stems from our initial
hypothesis that the base SLLM
model can effectively perform
the invoke task. Our base SLLM
model [29] is inherently weaker
than specialized models such
as Whisper because of the
limitation of training data. In
future work, we plan to adopt
Whisper [6] as the base model
and further refine the SIMA
system to improve the ASR
performance of the SOTA
model.
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Major

CATEGORY

Accuracy/Untranslated

SOURCE | TARGET PENALTY

X SIMA 222 S4 QA E
(WER)2 3 &&AIZ|X[2E, O
3| Whisper [6]01| H|3H 2|5
H|O|E{All (out-of-domain
data)@! FLEURS [28]0lIM 4
S0| Yo ZL|Ct ol2{st HIStS
=7 7H4, & 712 SLLM 22|
"invoke" HUS SUEOE
aigt 4~ QU= 7HY0iA HIZE
LICE 22|12 7|2 SLLM 2
[29]2 =& H|O[E{2] SHA = 2l
3 Whisper2t 22 2 2o
sl 22X o= 450] ofgtL|
Ct. &= A0 M= Whisper
[6]2 7|2 ZE= xEstD,
SIMA AABIS S 714510
Z|HCHSOTA) 22| 24 olAl
f.

[ |
M52 BAAIL Ay

0.

[l

Although the current SIMA 5
model significantly improves
WER, it still lags behind
Whisper [6] on out-of-domain
data, FLEURS [28]. This
limitation stems from our initial
hypothesis that the base SLLM
model can effectively perform
the invoke task. Our base SLLM
model [29] is inherently weaker
than specialized models such
as Whisper because of the
limitation of training data. In
future work, we plan to adopt
Whisper [6] as the base model
and further refine the SIMA
system to improve the ASR
performance of the SOTA
model.
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Vi Style A common strategy to address 1 0.05%

these challenges is to use a
language identification (LID)
model that first detects the
language of the input speech
before invoking the
corresponding SOTA ASR
model for transcription, as
shown in Figure 1(b). However,
this two-stage approach has its
drawbacks. Many SOTA models
are commercial [12] and incur
usage fees based on the
volume of processing, making
this method costly. Additionally,
an incorrect LID prediction may
trigger the wrong model,
further affecting the user
experience [13].
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Vit Style Motivated by these limitations, 1 0.05%
we propose an alternative
strategy that selectively
invokes models based on the
complexity of the input speech.
In ASR tasks, the recognition
difficulty varies significantly.
Under clean acoustic
conditions with simple
vocabulary, both the SOTA and
regular models typically yield
low word error rates (WER).
However, in noisy or
acoustically challenging
environments, the WER
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increases [14, 15, 16, 17], where
robust SOTA models generally
perform better [6]. This
observation raises a key
question: Can we distinguish
between simple and complex
speech inputs and adapt our
ASR system accordingly?
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Vil Other Motivated by these limitations, 1 0.05%
we propose an alternative
strategy that selectively
invokes models based on the
complexity of the input speech.
In ASR tasks, the recognition
difficulty varies significantly.
Under clean acoustic
conditions with simple
vocabulary, both the SOTA and
regular models typically yield
low word error rates (WER).
However, in noisy or
acoustically challenging
environments, the WER
increases [14, 15, 16, 17], where
robust SOTA models generally
perform better [6]. This
observation raises a key
question: Can we distinguish
between simple and complex
speech inputs and adapt our
ASR system accordingly?
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Motivated by these limitations,
we propose an alternative
strategy that selectively
invokes models based on the
complexity of the input speech.
In ASR tasks, the recognition
difficulty varies significantly.
Under clean acoustic
conditions with simple
vocabulary, both the SOTA and
regular models typically yield
low word error rates (WER).
However, in noisy or
acoustically challenging
environments, the WER
increases [14, 15, 16, 17], where
robust SOTA models generally
perform better [6]. This
observation raises a key
question: Can we distinguish
between simple and complex
speech inputs and adapt our
ASR system accordingly?
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SOURCE | TARGET
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The results indicate that, due to
the selective invocation of
SOTA models, the SIMA model
achieves significant WER
reductions of 18.6%, 9.3%, and
28.2% relative to the base
model on the three datasets.
Furthermore, compared to the
random invocation strategy,
SIMA consistently delivers
lower WER, with improvements
of 6.6%, 4.2%, and 16.8%.
Notably, the improvement on
the FLEURS dataset is
especially significant, as it is
out-of-domain for the base
model but in-domain for the
LID-Top model. These findings
convincingly demonstrate
SIMA's remarkable ability to
precisely determine when to
invoke the SOTA model, thereby
optimizing overall ASR
performance.
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SOURCE | TARGET
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The results indicate that, due to
the selective invocation of
SOTA models, the SIMA model
achieves significant WER
reductions of 18.6%, 9.3%, and
28.2% relative to the base
model on the three datasets.
Furthermore, compared to the
random invocation strategy,
SIMA consistently delivers
lower WER, with improvements
of 6.6%, 4.2%, and 16.8%.
Notably, the improvement on
the FLEURS dataset is
especially significant, as it is
out-of-domain for the base
model but in-domain for the
LID-Top model. These findings
convincingly demonstrate
SIMA's remarkable ability to
precisely determine when to
invoke the SOTA model, thereby
optimizing overall ASR
performance.

A Aol 2H, SIMA 22
2 Z[HEHSOTA) 2EIS MEHN
OF SE8FOZEN, 7|E R
HISH M| ZEX| CllO|E{ A0l A 282t
18.6%, 9.3%, 28.2%°2| A&t
5t o] Q2 8(WER) Z4AE &
SHSLICE ESH 2XIQ| El S
HMefut Hl w3l o, SIMAE
ZE|A| o %2 WERE H|Z2st
, 2t2t 6.6%, 4.2%, 16.8%
”% e BERsLc §
LEURS G[O|E{Al0ojAM2]
%é% 0 FE21X|=¢l, o
7|& 2Eof|A= s 20k
(in-domain) 7} OFL|X|2t, LID-
Top ZE0 A= s I=’0F0|7|
miELICt Ol2{st But=
SIMAZ} 2| -t RS o1H| &

ne m oz r

[
I

rIr 0|r o jo

The invocation decision
accuracy (ACC) and F1 scores
are approximately 70%,
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CATEGORY

Style

Style

SOURCE | TARGET

supporting our hypothesis that
SLLMs can effectively
differentiate speech inputs
based on complexity. Although
SIMA exhibits a slight WER gap
compared to LID-Top, it
reduces invocation costs by
approximately 0.51x across the
three datasets, significantly
lowering associated expenses.

24 WY QA HaEt: (ACC)2t
F184$E 24 70%2, M3|9| 7t
MOl = SLLM(CHE 210 2
2ol SM9o| BT w2t &t
oz JEE 2 QIrt= M2 S
fL|CE SIMA= LID-Top2t
2 AZEe| T QF7E
WER) At0|E HO|X[2F A 7¢
X| HIO|E{MIOf| A 2F 0.51H{THE
24 Uy S H|IE2 &0, oA

HIES 3 HELITh

~

=N g
o

El ot |
bl

—_

The invocation decision
accuracy (ACC) and F1 scores
are approximately 70%,
supporting our hypothesis that
SLLMs can effectively
differentiate speech inputs
based on complexity. Although
SIMA exhibits a slight WER gap
compared to LID-Top, it
reduces invocation costs by
approximately 0.51x across the
three datasets, significantly
lowering associated expenses.
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Although the current SIMA
model significantly improves
WER, it still lags behind
Whisper [6] on out-of-domain
data, FLEURS [28]. This
limitation stems from our initial
hypothesis that the base SLLM
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model can effectively perform
the invoke task. Our base SLLM
model [29] is inherently weaker
than specialized models such
as Whisper because of the
limitation of training data. In
future work, we plan to adopt
Whisper [6] as the base model
and further refine the SIMA
system to improve the ASR
performance of the SOTA
model.
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Minor F|uency/Grammar Although the current SIMA 1 0.05%
model significantly improves

WER, it still lags behind
Whisper [6] on out-of-domain
data, FLEURS [28]. This
limitation stems from our initial
hypothesis that the base SLLM
model can effectively perform
the invoke task. Our base SLLM
model [29] is inherently weaker
than specialized models such
as Whisper because of the
limitation of training data. In
future work, we plan to adopt
Whisper [6] as the base model
and further refine the SIMA
system to improve the ASR
performance of the SOTA
model.
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This tool uses the Multidimensional Quality Metrics (MQM) framework, licensed under CC BY 4.0 by The MQM Council.
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